目录:
- 前言
本文简单地讨论下CSIDH型超奇异椭圆曲线同源图中的非退化回路,或者说,\(t\)个线性无关的关系\(r_1,\cdots,r_t\),使得 \[ \require{HTML} \newcommand{\rotateninety}[1]{\style{display: inline-block; transform: rotate(90deg)}{#1}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\HH}{\mathbb{H}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\abs}[1]{\left\vert #1 \right\vert} \newcommand{\End}{\text{End}} \newcommand{\tens}[1]{\otimes_{#1}} \newcommand{\SL}{\text{SL}} \newcommand{\GL}{\text{GL}} \newcommand{\iso}{\mathop{\longrightarrow}\limits^{\sim}} \newcommand{\Tr}{\operatorname{T}} \newcommand{\Nm}{\operatorname{N}} \newcommand{\deg}{\operatorname{deg}} \newcommand{\gcd}{\mathop{\text{gcd}}} \newcommand{\lcm}{\mathop{\text{lcm}}} \newcommand{\Aut}{\text{Aut}} \newcommand{\diag}{\text{diag}} \newcommand{\ker}{\operatorname{ker}} \newcommand{\coker}{\operatorname{coker}} \newcommand{\PGL}{\text{PGL}} \newcommand{\OO}{\mathcal{O}} \newcommand{\cl}{\text{cl}} \newcommand{\FF}{\mathbb{F}} \newcommand{\PP}{\mathbb{P}} \newcommand{\disc}{\operatorname{disc}} \newcommand{\Gal}{\text{Gal}} \newcommand{\Im}{\operatorname{Im}} \newcommand{\Re}{\operatorname{Re}} \newcommand{\vol}{\text{vol}} \newcommand{\bs}{\boldsymbol} \newcommand{\Hom}{\text{Hom}} \cl(\OO) = \left\langle [\mathfrak{l}_1],\cdots, [\mathfrak{l}_t]\mid r_1, \cdots, r_t,\quad [\mathfrak{l}_i][\mathfrak{l}_j][\mathfrak{l}_i]^{-1}[\mathfrak{l}_j]^{-1},\ i\ne j\right\rangle \]
其中,
\[ p = 4\prod\limits_{i=1}^t \ell_i - 1,\quad p,\ell_i\in\PP,\quad \ell_i > 2 \] \[ \OO = \ZZ\left[\sqrt{-p}\right],\quad \pi = \sqrt{-p} \] \[ \mathfrak{l}_i = (\ell_i, \pi - 1),\quad \bar{\mathfrak{l}}_i = (\ell_i, \pi + 1) \]向量组\((e_{i1},\cdots,e_{it}),\ r_i = \prod\limits_{j=1}^{t} [\mathfrak{l}_j]^{e_{ij}},\ i=1,\cdots,t\)张成的\(\ZZ\)-子模叫做\(\cl(\OO)\)的一个关系格(relation lattice)。
- 存在性讨论(类群的有限性)
定理1-1:(Minkowski)设\(L\)是\(n\)维欧式空间\(V\)中的满秩格,\(X\)是\(L\)的一个凸子集,且关于原点对称。若在Lebesgue测度的意义下\(\vol(X) > 2^n \det(L)\),那么\(X\)至少包含了\(L\)的一个非零格点。
证明:记\(L\)的基本域(parallelopiped)为\(\mathcal{P}\),满秩的条件告诉我们
\[ V = \bigsqcup\limits_{\bs x \in L}\left(\mathcal{P} - \bs x\right) \] \[ \frac{1}{2}X = \bigsqcup\limits_{\bs x \in L}\left(\frac{1}{2}X \cap \left(\mathcal{P} - \bs x\right)\right) \]设\(\bs x, \bs x'\in L,\ \bs x \ne \bs x'\),且\(\frac{1}{2}X+\bs x\)与\(\frac{1}{2}X+\bs x'\)有公共点,那么\(\bs y-\bs x,\bs y-\bs x'\in\frac{1}{2}X\),根据凸性得
\[ \frac{\bs x - \bs x'}{2} = \frac{\bs y - \bs x'}{2} - \frac{\bs y - \bs x}{2} \in \frac{1}{2}X \]即\(X\)中包含\(\bs 0 \ne \bs x - \bs x' \in L\)。
现在设\(\forall \bs x, \bs x'\in L,\ \bs x \ne \bs x'\),\(\frac{1}{2}X+\bs x\)与\(\frac{1}{2}X+\bs x'\)无公共点,则根据测度的性质,
\[ \begin{aligned} \frac{1}{2^n} \vol(X) &= \vol\left(\frac{1}{2}X\right)\\ &= \sum\limits_{\bs x\in L}\left(\frac{1}{2}X \cap \left(\mathcal{P} - \bs x\right)\right) \\ &= \sum\limits_{\bs x\in L}\left(\left(\frac{1}{2}X + \bs x\right) \cap \mathcal{P}\right) \\ &\le \vol(\mathcal{P})\\ &= \det(L) \end{aligned} \]与题干条件矛盾。
Q.E.D.
注:若\(X\)是紧集,且\(\vol(\frac{1}{2}X) = \det(L)\),找到序列\(A_1\subseteq A_2\subseteq \cdots\),使得
\[ A_k = \left\{\bs x \in L \cap \left(1+\frac{1}{k}X\right): \bs x \ne \bs 0 \right\} \]则根据定理1-1知\(A_k \ne \varnothing\),故\(\exists \bs x\ne \bs 0\),
\[ \bs x \in \bigcap\limits_{k=1}^{\infty} \left(1+\frac{1}{k}\right)X = X \]最后一个等号成立是由于\(X\)是紧集。
设\(K\)是代数数域,\(n = r + 2s = \# \Hom(K, \CC)\),考虑从\(K\)到\(\CC\)的嵌入诱导的映射
\[ j: K\rightarrow K_{\CC} := \prod\limits_{\tau} \CC,\quad a\mapsto ja = (\tau a) \]\(K_{\CC}\)上配有内积
\[ \langle x, y \rangle = \sum\limits_{\tau} x_{\tau} \bar{y}_{\tau} \]