目录:
- 0. 前言
- 1. Complex multiplication for babies
- 2. j-function & its q-expansion
- 3. The modular polynomial
- 4. Class group action
- 5. The Hilbert class polynomial
- Appendix A - Elliptic curves in a nutshell
- Appendix B - The valence formula
- Appendix C - Classification of endomorphism algebras
- Appendix D - About the modular polynomial
- References
- 前言
本文旨在以笔者的角度,对椭圆曲线的相关内容进行一些基本的总结。
本文会省略一些内容,默认是显然的并时常以“众所周知”一笔带过以节省篇幅。比如本文不会探讨同源映射的可分性、度与对偶,本文也不会探讨二次域理想类群与二次型的关系。
本文的章节之间不一定存在严格的逻辑顺序。
本文会先做一堆铺垫,然后给出下面这个东西的解。
含4p-1型质因子的大整数分解问题(简称“4p-1问题”)[1][2]:已知整数\(N\)由两个pbits
比特位的质因子\(p,q\)组成(\(N=pq\)),其中
求\(p,q\)。
在量子计算机发明出来之后这个问题就变得平凡了——它与一般的大整数分解问题在Shor算法下基本无异。而在此之前,如果能够相对高效地解决上述问题的话,我们的RSA就又多出了一类不安全的模数——虽然寻找某类特殊的大整数分解方法并非本文的出发点。
- Complex multiplication for babies
众所周知,作为一个复环面,格点\(\CC/\Lambda\)与椭圆曲线\(E/\CC\)的点群同构[Appendix A],\(E/\CC\)上的自同态对应在\(\CC/\Lambda\)上是形如
\[ f(z+\Lambda)=\alpha z+\Lambda,\quad z\in \CC,\quad \alpha \in \HH=\{x+iy:x,y\in\RR,y>0\},\quad \alpha \Lambda\subseteq \Lambda \]的全纯映射。一般来说,每个\(\alpha \in\ZZ\)都可以对应一个自同态,而如果存在满足\(\alpha \Lambda\subseteq\Lambda\)的\(\alpha \in\CC - \RR\),那么称该\(\CC/\Lambda\)对应的\(E/\CC\)具有复数乘法(complex multiplication),这个\(\alpha\)则被称为复乘点(CM point)。
不妨设\(\Lambda = \ZZ + \ZZ\tau\),那么\( \alpha,\alpha^2 \in \Lambda \),\(\alpha^2\)可以表示为\(1,\alpha\)的有理系数线性组合,即\(\alpha\)是\(\ZZ\)上的二次代数数。
\(E/\CC\)的自同态代数与有理数域或者某个虚二次域\(K\)是同构的,\(E/\CC\)的自同态环与整数环或者某个虚二次域的某个序\(\mathcal{O}\)是同构的。
\[ \QQ \tens{\ZZ} \End(E) =: \End^0 (E) \cong \QQ \text{ or } K \] \[ \End(E) \cong \ZZ \text{ or } \mathcal{O} \]事实上,我们有,
定理1-1:对于域\(k\)上的椭圆曲线\(E/k\)而言,\(\End^0 (E)\)与以下三者之一同构
- 有理数域 \( \QQ \)
- 虚二次域 \( \QQ(\alpha),\quad \alpha^2 < 0 \)
- 四元数代数 \( \QQ(\alpha,\beta),\quad \alpha^2,\beta^2 < 0, \quad \alpha\beta=-\beta\alpha \)
证明见附录C[Appendix C]。对于复数域上的\(E/\CC\),由于\(E/\CC\)上的自同态一定交换,故定理1-1的第三种情况是不可能出现的。
对于有限域上的椭圆曲线\(E\)而言,自同态代数在代数闭域上表现为第三种情况当且仅当\(E\)超奇异(supersingular)(不证)。有如下两个典型的例子。
例1-1:\(p\equiv 3\pmod{4},\ p > 3\),\(j(E/\FF_p)=1728\)。取\(E: y^2 = x^3 + x\),那么\(\left(\frac{-1}{p}\right)=-1\),于是下述的自同态不在\(\ZZ\)中。
\[ \phi: (x, y) \mapsto (-x, iy),\quad i^2 + 1 = 0,\ i\notin\FF_p \]其满足\(\phi^2 + 1 = 0\),算上\(E\)的Frobenius自同态\(\pi\),\(\End^0(E)\)必然与某个四元数代数同构,于是\(E\)超奇异,\(\pi^2 + p = 0\)。由于\(i\notin \FF_p\),故\(\pi\)不固定\(i\)(更精确地,\(i^p = -i\)),于是\(\pi\)与\(\phi\)不交换。
\[ \End^0(E) \cong \QQ(\phi, \pi),\quad \phi^2 = -1,\ \pi^2 = -p,\ \phi\pi = -\pi\phi \]例1-2:\(p\equiv 2\pmod{3},\ p > 3\),\(j(E/\FF_p)=0\)。取\(E: y^2 = x^3 + 1\),那么\(\left(\frac{-3}{p}\right)=(-1)^{\frac{p-1}{2}\cdot \frac{3-1}{2}}\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)=\left(\frac{2}{3}\right)=-1\),于是下述的自同态不在\(\ZZ\)中。
\[ \phi: (x, y) \mapsto (\rho x, y),\quad \rho^2 + \rho + 1 = 0,\ \rho\notin\FF_p \]其满足\(\phi^2 + \phi + 1 = 0\),算上\(E\)的Frobenius自同态\(\pi\),\(\End^0(E)\)必然与某个四元数代数同构,于是\(E\)超奇异,\(\pi^2 + p = 0\)。由于\(\rho\notin \FF_p\),故\(\pi\)不固定\(\rho\)(更精确地,\(\rho^p = -\rho - 1\)),于是\(\pi\)与\(\phi\)不交换。
\[ \End^0(E) \cong \QQ(\phi, \pi) \]- j-function & its q-expansion
由\(\Lambda\)的Weierstrass方程
\[ (\wp')^2 = 4 \wp^3 - g_2 \wp - g_3, \qquad \Delta(\Lambda) = g_2^3 - 27g_3^2 \] \[ \wp = \wp(z;\Lambda) = \frac{1}{z^2} + \sum\limits_{\omega\in\Lambda-\{0\}} \left[ \frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right] \]我们可以得到一个零阶齐次的函数——j不变量
\[ j(\Lambda) = 12^3 J(\Lambda) = \frac{1728 g_2^3}{\Delta}, \qquad j(\tau) := j(\Lambda(\omega_1,\omega_2)), \quad \omega_1/\omega_2=\tau\in\HH \] \[ j(\gamma\tau) = j(\tau),\qquad \forall \tau\in\HH,\ \gamma\in\Gamma:=\SL_2(\ZZ) \]类似地,与之相关联的椭圆曲线\(E:y^2=4x^3-g_2x-g_3\)(\(x=\wp(z),\ y=\wp'(z)\))的j不变量为
\[ j_E = j(E) = \frac{1728 g_2^3}{\Delta} = \frac{1728 g_2^3}{g_2^3 - 27g_3^2} \]根据[Appendix B]中的价公式,
- \(v_\rho(G_4)=1,\ v_i(G_4)=0\)
- \(v_\rho(G_6)=0,\ v_i(G_6)=1\)
- \(v_\infty(\Delta)=1\)
\(G_4,G_6,\Delta\)在\(\HH\)中除了上述位置外的其余地方没有极点与零点。因此
\[ v_\rho(J) = 3,\ v_\infty(J) = -1,\ v_i(J-1) = 2 \]\(J\)在\(\HH\)的其余地方没有极点与零点。进一步地,对于\(\forall c\in\CC-\{0,1\}\),\(J(z),J(z)-c\)有一个一阶极点,因此\(J(z)-c\)一定有一个一阶零点\(z_c\),显然每个\(z_c\)对于每个\(c\)而言是一一对应的。我们有双射
\[ j: \Gamma\backslash\HH \iso \CC \]现在,对于两条椭圆曲线\(E/\CC,\ E'/\CC\)及其对应的\(\Lambda=[\omega_1,\omega_2],\ \Lambda'=[\omega_1',\omega_2']\)而言,
\[ j(E) = j(E') \iff j(\Lambda) = j(\Lambda') \iff \omega_1/\omega_2=\pm \omega_1'/\omega_2' \iff \exists c\in\CC^*,\ c\Lambda = \Lambda' \iff E \cong E' \]此时,\(\exists c\in \CC^*\),
\[ g_2(\Lambda')=g_2(c\Lambda)=c^{-4}g_2(\Lambda),\quad g_3(\Lambda')=g_3(c\Lambda)=c^{-6}g_3(\Lambda) \] \[ \wp(cz;\Lambda')=c^{-2}\wp(z;\Lambda),\ \wp'(cz;\Lambda')=c^{-3}\wp'(z;\Lambda) \implies (x,y)\mapsto(c^{-2}x,c^{-3}y) \]对于有限域上的椭圆曲线而言,我们可以类似地定义j不变量,并且可以用代数的方法证明,在有限域的代数闭包中每个j不变量能够在同构的意义下唯一确定一条椭圆曲线。
例2-1:考虑域\(K\)上具有cusp型奇异点的椭圆曲线\(E: y^2 = x^3\),此时若\(K\)为复数域,则\(\Lambda(E)=\{0\}\)。将\((0,0),\infty\ne P\in E/K\)参数化为\((t^2, t^3),\ t\in \overline{K}\),则\(P\)的倍乘退化为
\[ k: (t^2, t^3) \mapsto \begin{cases} \left(\left(\frac{t}{k}\right)^2, \left(\frac{t}{k}\right)^3\right), & 0 < \operatorname{char}{K} \nmid k\quad\text{or}\quad 0 = \operatorname{char}{K} \ne k\\ \infty, &\text{otherwise}\\ \end{cases} \]\(\langle P\rangle \cong \FF_{\operatorname{char}{K}}\text{ or }\ZZ\),\(\langle P\rangle\)中的离散对数问题退化为整数环或有限域上的乘除法。
众所周知,全纯映射
\[ z\mapsto e^{2\pi i z} =: q_z \]将开集\(\HH_{\tau} := \{z\in\CC: \Im{z} > \tau\}\)映射到去心开圆盘\(\mathring{B}(0; e^{-2\pi \tau}) := \{z\in\CC: \abs{z} < e^{-2\pi \tau},\ z\ne 0\}\)。而\(T\backslash\HH_{\tau}\)在上述映射下刚好卷绕这个去心开圆盘一次(随着x的变化),其中\(T=\begin{pmatrix}1&1\\0&1\\\end{pmatrix}\)。这表明\(z\mapsto q_z\)诱导出\(T\backslash\HH_{\tau}\)到\(\mathring{B}(0; e^{-2\pi \tau})\)的一个解析同构。
至此,\(\HH_{\tau}\)上周期为1的半纯函数\(f\)在\(\mathring{B}(0; e^{-2\pi \tau})\)上诱导出一个半纯函数\(f^*\)。我们始终可以在去心开圆盘的某个环带中将\(f^*\)展开为Laurent级数(根据\(f\)的半纯性):
\[ f^*(q) = \sum\limits_{n = -\infty}^{\infty} c_n q^n,\quad f(z) = \sum\limits_{n = -\infty}^{\infty} c_n e^{2\pi i nz} \]若\(f^*(q)\)在\(q=0\)处半纯,则
\[ f^*(q) = \sum\limits_{n = -N}^{\infty} c_n q^n,\quad f(z) = \sum\limits_{n = -N}^{\infty} c_n e^{2\pi i nz}, \quad N \in \ZZ \]此时称\(f\)在\(\infty\)处半纯。
接下来我们尝试求解\(j\)函数的q-级数展开。
首先根据Weierstrass分解定理,将整函数\(\sin{\pi z}\)表示为
\[ \sin{\pi z} = \pi z \prod\limits_{n = 1}^{\infty} \left(1-\frac{z}{n}\right)\left(1+\frac{z}{n}\right) \]两边取对数导数,另外根据Euler公式与幂级数展开得到,对于\(\tau\in\HH\)而言,
\[ \frac{1}{\tau} + \sum\limits_{n=1}^{\infty} \left(\frac{1}{\tau-n} + \frac{1}{\tau+n}\right) = \pi \frac{\cos{\pi\tau}}{\sin{\pi\tau}} = \pi i - 2\pi i\sum\limits_{\nu = 0}^{\infty} q_{\tau}^{\nu} \]对左右两式反复求导,对比系数可得
\[ (-1)^{k-1} (k-1)! \sum\limits_{n = -\infty}^{\infty} \frac{1}{(\tau - n)^k} = -\sum\limits_{\nu = 1}^{\infty} (2\pi i)^k \nu^{k-1} q_{\tau}^{\nu} \]据此变形Eisenstein级数:
\[ \begin{aligned} G_k(\tau) &= \sum\limits_{0\ne m,n\in\ZZ}\frac{1}{(m\tau + n)^{2k}}\\ &= 2\zeta(2k) + 2\sum\limits_{m=1}^{\infty} \sum\limits_{n=-\infty}^{\infty}\frac{1}{(m\tau + n)^{2k}}\\ &= 2\zeta(2k) + 2\sum\limits_{m = 1}^{\infty}\sum\limits_{\nu = 1}^{\infty} \frac{(2\pi i)^{2k}\nu^{2k-1}}{(2k-1)!}q_{\tau}^{m\nu}\\ &= 2\zeta(2k) + 2\frac{(2\pi i)^{2k}}{(2k-1)!}\sum\limits_{n=1}^{\infty} \sigma_{2k-1}(n) q_{\tau}^n \end{aligned} \]其中
\[ \sigma_k(n) := \sum\limits_{0 < d|n} d^k \]于是,代入我们小学二年级就知道的常数\(\zeta(4) = \frac{\pi^4}{90},\ \zeta(6) = \frac{2\pi ^6}{245}\)算得
其中
\[ X = \sum\limits_{n=1}^{\infty} \sigma_3(n) q_{\tau}^n,\quad Y = \sum\limits_{n=1}^{\infty} \sigma_5(n) q_{\tau}^n \]注意到模4与模3的意义下\(d^3\equiv d^5,\ d\in\ZZ\),故\(\sigma_3(n)\equiv\sigma_5(n)\),故\((1+240X)^3 - (1-504Y)^2\equiv 2^4 3^2(5X+7Y)\equiv 0\pmod{2^6 3^3}\),于是
\[ \Delta = (2\pi)^{12} \sum\limits_{n=1}^{\infty} d_n q_{\tau}^n,\quad d_n\in\ZZ,\ d_1 = \frac{1}{1728}(240\cdot 3 - (-504)\cdot 2) = 1 \]最后,设
\[ \begin{aligned} j(\tau) &= 2^6 3^3 \frac{g_2^3}{\Delta}\\ &= \sum\limits_{n=-1}^{\infty} a_n q_{\tau}^{n} \end{aligned} \]则
\[ \begin{aligned} \left(\sum\limits_{n=0}^{\infty} d_{n+1}q^n\right)\left(\sum\limits_{n=0}^{\infty} a_{n-1}q^n\right) &= \sum\limits_{n=0}^{\infty}\left(\sum\limits_{m=0}^n d_{m+1}a_{n-m-1}\right) q_{\tau}^n\\ &= \left(1+240\sum\limits_{n=1}^{\infty} \sigma_3(n) q_{\tau}^n\right)^3\\ &=: \sum\limits_{n=0}^{\infty} b_n q_{\tau}^n,\quad b_n\in\ZZ \end{aligned} \]于是
\[ d_{1} a_{-1} = b_0 \implies a_{-1} = 1 \] \[ d_{1} a_{n-1} + d_{2}a_{n-2} + \cdots + d_{n+1}a_{-1} = b_n\implies a_{n-1}\in \ZZ,\quad \forall n\in\ZZ_{+} \]显式地写出\(j\)函数的q-级数开头几项,
\[ \begin{aligned} j^*(q) &= \frac{1}{q} + 744 + 196884q + 21493760q^2 +\\ &864299970q^3 + 20245856256q^4 + 333202640600q^5 +\\ &4252023300096q^6 + 44656994071935q^7 + 401490886656000q^8 +\\ &3176440229784420q^9 + 22567393309593600q^{10} + 146211911499519294q^{11} +\\ &874313719685775360q^{12} + 4872010111798142520q^{13} +\\ &25497827389410525184q^{14} + \cdots \end{aligned} \]- The modular polynomial
记
\[ \GL_n^+(R)=\{M\in\GL_n(R): \det(M)>0\},\quad \Delta_n=\{M\in\GL_2(\ZZ): \det(M)=n\} \] \[ \Delta_n^*=\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}\in\Delta_n: \gcd(a,b,c,d)=1\right\}=\left\{M\in\PGL_2(\ZZ):\det(M)=n\right\} \]设\(j\)为前文所述,则\(j\circ \gamma\alpha=j\circ\alpha,\ \forall\gamma\in\Gamma\)。取\(\Gamma\backslash\Delta_n^*\)中一组形如下式的代表元
\[ \begin{pmatrix}a&b\\0&d\end{pmatrix},\quad ad=n,\quad 0 < a,\ 0\le b < d,\quad \gcd(a,b,d) = 1 \]令\(\psi(n)=\abs{\Gamma\backslash\Delta_n^*}\),不难算出[4]
\[ \psi(n) = n\prod\limits_{p\mid n}\left(1+\frac{1}{p}\right) \]我们希望找到在\(\Gamma\backslash\Delta_n^*\)的置换的意义下\(j(n\tau)\)在\(\ZZ[j(\tau)]\)中的极小多项式,故令
\[ \Phi_n(X)=\prod\limits_{i=1}^{\psi(n)}(X-j\circ \alpha_i), \quad \alpha_i\in \Gamma\backslash\Delta_n^* \]它满足
定理3-1:
- \(\Phi_n(X)\in\ZZ[X,j]\)。
- \(\Phi_n(X)\)是\(\CC(j)\)上不可约的\(\psi(n)\)阶多项式。
- \(\Phi_n(X,j)=\Phi_n(j,X)\)。
- 若\(n\)不为平方数,则\(\Phi_n(j,j)\)次数大于1,且首项系数为\(\pm 1\)。
证明参见附录D[Appendix D]。我们称\(\Phi_n(X)\)为n阶模多项式(modular polynomial of order n)。
我们可以得到一个有用的推论:
推论3-1:若\(\tau\in\HH\)是虚二次代数数,则\(j(\tau)\)是\(\ZZ\)上的代数整数。
证明:令\(K=\QQ(\tau)\),
\[ \lambda = \begin{cases} 1+i, &K = \QQ(i)\\ \sqrt{-m}, &K = \QQ(\sqrt{-m}),\ m>1\text{ square free} \end{cases} \]设\(\OO_K=[z,1]\),则
\[ \lambda\begin{pmatrix} z\\1 \end{pmatrix} = \underbrace{\begin{pmatrix} a & b\\ c & d\\ \end{pmatrix}}_{\alpha} \begin{pmatrix} z\\1 \end{pmatrix} \]且\(0 < \Nm_{K/\QQ}(\lambda) = \det{\alpha} =: n\),\(z = \alpha z\)。根据\(\lambda\)的构造这表明\(\alpha\in\Delta_{n}^*\),且\(n\)没有平方因子,定理3-1的第四条告诉我们\(j(z)\)是代数整数。
\(K = \QQ(\tau)=\QQ(z)\)说明\(\tau = uz + v,\ u,v\in\QQ\),不妨设\(\tau = \beta z,\ \beta\in\Delta_{n'}^*,\ n'=\det{\beta}\),根据定理3-1的第一条\(j(\tau) = j(\beta z)\)是\(\ZZ[j(z)]\)上的代数整数,从而根据代数整数的特性知\(j(\tau)\)是\(\ZZ\)上的代数整数。
Q.E.D.
考虑如下的交换图:
\[ \require{AMScd} \begin{CD} \CC/M @>{\lambda}>> \CC/L\\ @VV{\rotateninety{\sim}}V @VV{\rotateninety{\sim}}V \\ B/\CC @>>{\phi}> A/\CC \end{CD} \]其中\(M\subseteq L\)。设\(L=[\omega_1,\omega_2]\),那么,
\[ M=[a\omega_1+b\omega_2,c\omega_1+d\omega_2],\quad \alpha=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in \GL_2^+(\ZZ) \]将\(\alpha\)写成Smith标准形,
\[ \diag\{\lambda_1,\lambda_2\} = \alpha' = \gamma\alpha\gamma',\quad \gamma,\gamma'\in\Gamma,\quad \lambda_1\mid\lambda_2 \] \[ M=[\lambda_1\omega_1,\lambda_2\omega_2] \]故\(L/M\)是循环加法群当且仅当\(\lambda_1=1\),也即\(\gcd(a,b,c,d)=1\)。
同态\(\lambda:\CC/M\to\CC/L,\ z+M\mapsto z+L\)的核为\(\ker{\lambda}=L/M\)。据此立即得到,
定理3-2:从\(B/\CC\)到\(A/\CC\)的同源\(\phi\)满足\(\ker{\phi}\)为\(n\)阶循环群当且仅当\(\Phi_n(j_A,j_B)=0\)。
对于非代数闭域上也有类似的结论,不过陪域\(A\)有时需替换为\(A\)的某条孪生曲线。
我们尝试计算\(\Phi_2(X, j)\)的表达式,首先显式地写出
\[ \Phi_2(X, j(\tau)) = \left(X - j\left(2\tau\right)\right)\left(X - j\left(\frac{\tau}{2}\right)\right)\left(X - j\left(\frac{\tau+1}{2}\right)\right) \]根据j函数的q-级数展开式与附录D[Appendix D]的引理D-1,我们计算出
\[ \begin{aligned} &j\left(2\tau\right)j\left(\frac{\tau}{2}\right)j\left(\frac{\tau+1}{2}\right)\\ =\ &\left(q^{-2}+744+196884q^2+\OO(q^4)\right)\cdot\\ &\left(q^{-1/2}+744+196884q^{1/2}+21493760q+864299970q^{3/2}+20245856256q^2+333202640600q^{5/2}+\OO(q^3)\right)\cdot\\ &\left(-q^{-1/2}+744-196884q^{1/2}+21493760q-864299970q^{3/2}+20245856256q^2-333202640600q^{5/2}+\OO(q^3)\right)\\ =\ &\left(q^{-2}+744+196884q^2+\OO(q^4)\right)\left(-q^{-1}+159768-8509194516q+151107477178368q^2+\OO(q^{3})\right)\\ =\ &\left(-q^{-3}+159768q^{-2}-8509195260q^{-1}+151107596045760+\OO(q)\right)\\ =\ &-j^3 + 162000j^2 - 8748000000j + 157464000000000 \end{aligned} \]类似地,
\[ \begin{aligned} &j\left(2\tau\right)j\left(\frac{\tau}{2}\right) + j\left(\frac{\tau}{2}\right)j\left(\frac{\tau+1}{2}\right) + j\left(\frac{\tau+1}{2}\right)j\left(2\tau\right)\\ =\ &1488j^2 + 40773375j + 8748000000 \end{aligned} \] \[ \begin{aligned} &j\left(2\tau\right) + j\left(\frac{\tau}{2}\right) + j\left(\frac{\tau+1}{2}\right)\\ =\ &j^2 - 1488j + 162000 \end{aligned} \]结合上述结果与Vieta定理得到,
\[ \begin{aligned} \Phi_2(X, j) = &-X^2j^2 + X^3 + 1488X^2j + 1488Xj^2 + j^3 - 162000X^2 + 40773375Xj\\ & - 162000j^2 + 8748000000X + 8748000000j - 157464000000000 \end{aligned} \]为了验证上述结果是否正确,不妨考虑\(p = 14007008404447413697\),\(\FF_p\)上的椭圆曲线\(E:y^2 = x^3 + Ax + B,\ A = 14007008365700685685,\ B = 14004095012137039409\),它满足\(j(E)=114514\)。取\(R=(2059498320637642707, 0)\in E[2]\),我们利用Vélu公式[5]计算以\(\langle R\rangle\)为核的同源\(\phi\):
\[ \phi:E\to E',\quad \langle R\rangle \not\ni P = (x_P, y_P) \mapsto \left(x_P + \sum\limits_{Q\in \langle R\rangle-\{\infty\}}(x_{P+Q}-x_Q), y_P + \sum\limits_{Q\in \langle R\rangle-\{\infty\}}(y_{P+Q}-y_Q)\right) \]进一步地,由于\(\#\langle R\rangle = 2\),
\[ \phi(P) = \left(\frac{x_P^2-x_Px_R+t}{x_P-x_R}, \frac{(x_P-x_R)^2-t}{(x_P-x_R)^2}y_P\right),\quad P\notin\langle R\rangle \] \[ t=3x_R^2+A=7341004350464452570,\ w=x_Rt=2554626905828350750 \] \[ E':y^2=x^3+A'x+B',\quad A' = A-5t = 5316003422273250229,\ B' = B-7w = 10128715075785997856 \]于是\(j(E') = 1728\cdot \frac{4A'^3}{4A'^3+27B'^2} = 911665652129516608\),不难验证\(\Phi_2(j(E'), j(E)) \equiv 0 \pmod{p}\)。
- Class group action
数域\(K\)上的格\(\Lambda\)定义为\(K\)中的某个\([K:\QQ]\)维自由\(\ZZ\)-模,\(K\)上的序\(\OO\)定义为\(\OO_K\)中的某个\(\ZZ\)-维度为\([K:\QQ]\)的子环。对于每个\(\Lambda\)而言可以分配一个序\(\OO(\Lambda)\),使得
\[ \OO(\Lambda) = \left\{\lambda \in K: \lambda \Lambda \subseteq \Lambda \right\} \]若对于某个序\(\OO\)而言
\[ \OO(\Lambda) = \OO \]则称\(\Lambda\)是一个恰当的\(\OO\)-格。将\(\OO\)-理想\(\mathfrak{a}\)看作是一个\(\OO\)-格,若\(\OO(\mathfrak{a})=\OO\),则称\(\mathfrak{a}\)是一个恰当的\(\OO\)-理想。
我们定义理想类群(ideal class group)\(\text{cl}(\OO)=J(\OO)/P(\OO)\),\(J(\OO)\)是\(\OO\)在\(K\)中(\(K=\operatorname{Frac}{\OO}\))的所有可逆分式理想,\(P(\OO)\le J(\OO)\)是其中的所有主理想。注意到\(\OO(\Lambda)\)在与\(\Lambda\)位似的意义下唯一,故理想类群的元素为恰当\(\OO\)-理想的等价类。
理想类群的等价类可以与二元二次型(binary quadratic form)的等价类一一对应,Gauss证明了后者构成一个有限Abel群。\(\cl(\OO)\)有限[7, Thm 7.7],(作为特例)\(\cl(\OO_K)\)有限[6, Thm 6.3]。记\(h(\OO):=\#\cl(\OO),\ d_K := \disc{\OO_K}\),\(\OO = \ZZ + f\OO_K\),我们还有[7, Thm 7.24]
\[ h(\OO) = \frac{h(\OO_K)f}{(\OO_K^*: \OO^*)} \prod\limits_{p\mid f}\left(1-\left(\frac{d_K}{p}\right)\frac{1}{p}\right) \]且\(h(\OO_K)\mid h(\OO)\)。
对于复数域中具有复乘的椭圆曲线\(E/\CC\)与某个虚二次域的序\(\OO\)而言,\(\End(E)\cong \OO\),故\(E/\CC\)与某个格\(\mathfrak{b}\subseteq \OO\)对应。反过来,\(\mathfrak{b}\)也对应一条椭圆曲线\(E_{\mathfrak{b}}\)。
考虑\(\mathfrak{a}\in J(\OO)\)在\(E_{\mathfrak{b}}\)上的作用:
\[ \mathfrak{a}E_{\mathfrak{b}} := E_{\mathfrak{a}^{-1}\ \mathfrak{b}} \]对于主理想\(\mathfrak{a}\)而言,\(E_{\mathfrak{a}\mathfrak{b}} \cong E_{\mathfrak{b}}\),于是我们可以自然地定义理想类群的作用:
\[ [\mathfrak{a}]j(E_{\mathfrak{b}}) := j(E_{\mathfrak{a}^{-1}\ \mathfrak{b}}),\quad [\mathfrak{a}]\in \cl(\OO) \]我们考虑集合
\[ \text{Ell}_{\OO}(\CC) := \left\{j(E): E\text{ is defined over }\CC\text{ and }\End(E)\cong \OO \right\} \]显然\(\cl(\OO)\)以群的方式作用在\(\text{Ell}_{\OO}(\CC)\)上,\(\cl(\OO)\)与\(\text{Ell}_{\OO}(\CC)\)之间存在双射,且只有\(\cl(\OO)\)中的单位元存在固定点——这意味着\(\cl(\OO)\)的作用是传递的。
对于从\(E/\CC\)到\(\mathfrak{a}E\)的同源\(\phi_{\mathfrak{a}}\)而言,不难证明(\(E\)具有\(\OO\)-复乘)
定理4-1:
- \(\ker{\phi_\mathfrak{a}} = E[\mathfrak{a}]\)
- \(\deg{\phi_\mathfrak{a}} = \text{N}\mathfrak{a} = (\OO:\mathfrak{a})\)
其中
\[ E[\mathfrak{a}] := \left\{P\in E(\CC): \alpha P=0,\ \forall \alpha\in\mathfrak{a}\right\} \]- The Hilbert class polynomial
令
\[ H_{D}(X) := \prod\limits_{j\in\text{Ell}_{\OO}(\CC)} (X-j) \]称其为Hilbert类多项式(Hilbert class polynomial (of discriminant \(D\)))。
定理5-1:Hilbert类多项式的系数为整数。
证明:设\(\OO\)为虚二次域的某个序,那么根据[7, Thm 9.12],\(\cl(\OO)\)中的每个等价类都包含无穷多个质范理想,我们取其中的某个主理想\(\mathfrak{p},\ \text{N}\mathfrak{p} = p\),那么显然\(\mathfrak{p}E\cong E\),于是我们可以得到一个自同态:
\[ \begin{CD} E @>\mathfrak{p}>> \mathfrak{p}E\\ @. {_{\rlap{\quad \phi_{\mathfrak{p}}}}\style{display: inline-block; transform: rotate(30deg)}{{\xrightarrow[\rule{4em}{0em}]{}}}} @VV{\rotateninety{\sim}}V\\ @. E \end{CD} \]根据定理4-1,\(E\to\mathfrak{p}E\)是度为\(p\)的同源,从而\(\phi_{\mathfrak{p}}\)是度为\(p\)的同源,于是根据定理3-2可得\(\Phi_p(j(E), j(E)) = 0\),从而根据定理3-1的第四条每个\(j\in \text{Ell}_{\OO}(\CC)\)都是代数整数。
每个\(\sigma\in\Gal(\overline{\QQ}/\QQ)\)显然诱导一个自同态环间的同构:
\[ \begin{CD} \End(E^{\sigma}) @<\sigma<< \End(E)\\ @. {_{\rlap{\quad \style{display: inline-block; transform: rotate(25deg)}{\sim}}}\style{display: inline-block; transform: rotate(25deg)}{{\xleftarrow[\rule{3em}{0em}]{}}}} @AA{\rotateninety{\sim}}A\\ @. \OO \end{CD} \]也即\(j(E^{\sigma}) = j(E)^{\sigma}\in \text{Ell}_{\OO}(\CC)\),从而\(\Gal(\overline{\QQ}/\QQ)\)置换\( \text{Ell}_{\OO}(\CC) \)且保持\(H_D(X)\)的系数不变,即\(H_D(X)\in\QQ[X]\cap\overline{\ZZ}[X]=\ZZ[X]\)。
Q.E.D.
注:上述证明的开头使用的是弱化后的结论——即“存在质范主理想”——这无疑有大炮打蚊子的嫌疑。事实上,根据推论3-1,\(j(E) = j(\tau)\)是代数整数。
例5-1:对于\(D=-163\)而言,\(\OO = \left[\frac{1+\sqrt{-163}}{2}, 1\right]\),\(h(\OO) = 1\),从而\(H_{D}(X)\)仅有的一个根为整数。具有\(\OO\)-复乘的椭圆曲线\(E\)满足\(H_D(j(E)) = 0\),利用\(j\)函数的q-级数展开式计算
\[ j\left(\frac{1+\sqrt{-163}}{2}\right) = \left.j\right\vert_{q = -\text{exp}(-\pi\sqrt{163})} \] \[ \abs{-e^{-\pi\sqrt{163}}} < 3.81\times 10^{-18} \]可以预期,
\[ \begin{aligned} j\left(\frac{1+\sqrt{-163}}{2}\right) &\approx \frac{1}{q} + 744 + 196884q\\ &\approx -e^{\pi\sqrt{163}} + 744 + 7.5\times 10^{-13} \end{aligned} \]这也就是说\(e^{\pi\sqrt{163}}\)几乎是整数。事实上,
\[ e^{\pi\sqrt{163}} \approx 262537412640768744 - 7.5\times 10^{-13} \]于是我们可以得到
\[ j\left(\frac{1+\sqrt{-163}}{2}\right) = -262537412640768000 = -640320^3 \] \[ H_{-163}(X) = X + 262537412640768000 \]例5-2:仿照上例,对于所有满足\(h(\OO) = 1\)的虚二次域判别式\(D\)而言,\(e^{\pi\sqrt{D}}\)都几乎是整数。
可以预期的是,随着\(\abs{D}\)的减小,q-级数中的误差便越大,从而对整数的近似效果也越差。
\[ e^{\pi \sqrt{43}}\approx 884736743.999777 \approx 960^3 + 744 \] \[ e^{\pi \sqrt{27}}\approx 12288743.983979 \approx 3\cdot 160^3 + 744 \]例5-3:考虑\(h(\OO) = 2\)的虚二次域判别式\(D\),我们写出所有判别式为\(D\)的约化二次型,它们形如
\[ x^2 + xy + \frac{1-D}{4}y^2,\quad ax^2 + bxy + \frac{b^2-D}{4a}y^2 \]对于\(D = -427,-267,-235,-147,-123,-115,-75,-51\)而言\(a=b\)成立。根据Vieta定理,
\[ j\left(\frac{-1 + \sqrt{D}}{2}\right) + j\left(\frac{-b + \sqrt{D}}{2a}\right) \]是整数。若\(a = b\),那么理论上
\[ e^{\pi \sqrt{-D}} + e^{\pi \sqrt{-D} / a} \]也几乎是整数,而这只有在两个和数均足够大时效果才明显,以\(D=-267\)为例,此时\(a = b = 3\),
\[ e^{\pi \sqrt{267}} + e^{\pi \sqrt{267} / 3} \approx 19683091854079488001487.992708 \approx 19683091854079488000000 + 744\times 2 \]由于\(e^{\pi \sqrt{267} / 3} = e^{\pi \sqrt{89/3}}\),可以预期上式与整数的近似效果与上例中的\(e^{\pi \sqrt{27}}\)相近。
值得注意的是
\[ e^{\pi \sqrt{267} / 3} \approx 27000041.999971 \]也几乎是一个整数。然而,这一点并不能用本文主要研究的j函数来解释。欲见造成这一点的原因可以参考[8]与[9]。

- Appendix A - Elliptic curves in a nutshell

设\(f\)是\(2k\)阶非零自守函数,即\(f\)不恒为零,且对于\(\alpha = \begin{pmatrix}a & b \\ c & d\end{pmatrix}\in\Gamma\)而言,\(f(\alpha(z)) = (cz+d)^{2k} f(z)\),且\(f\)在\(\infty\)处半纯。\(v_p(f)\)表示使得\((z-p)^{-v_p(f)}f(z)\)在\(z=p\)附近解析无零点的唯一的整数,那么根据留数定理可以算出
\[ v_\infty(f) + \frac{1}{2}v_i(f) + \frac{1}{3}v_\rho(f) + \sum\limits_{p\in(\Gamma\backslash\HH)-\{i,\rho\}} v_p(f) = \frac{2k}{12} \] \[ i=\sqrt{-1},\ \rho = e^{2\pi i/3} \]- Appendix C - Classification of endomorphism algebras
定理1-1:对于域\(k\)上的椭圆曲线\(E/k\)而言,\(\End^0 (E)\)与以下三者之一同构
- 有理数域 \( \QQ \)
- 虚二次域 \( \QQ(\alpha),\quad \alpha^2 < 0 \)
- 四元数代数 \( \QQ(\alpha,\beta),\quad \alpha^2,\beta^2 < 0, \quad \alpha\beta=-\beta\alpha \)
证明:\(\QQ\subseteq\End^0(E)\)恒成立。若\(\alpha \in \End^0 (E)\)的像不在\(\QQ\)中,那么
\[ \Tr \left(\alpha-\frac{1}{2}\Tr \alpha\right) = \Tr \alpha - \frac{1}{2} \Tr\Tr\alpha = \Tr\alpha - \frac{1}{2}\cdot 2\Tr\alpha = 0,\quad \Tr=\Tr_{\QQ(\alpha)/\QQ} \]此外,
\[ 0 \ne \alpha = r\otimes\phi, \quad \deg \phi > 0,\ r\in\QQ \] \[ \alpha^2 - (\Tr\alpha)\alpha + \Nm\alpha = 0 \implies \alpha^2 = -\Nm\alpha < 0 \]这意味着虚二次域\(\QQ\left(\alpha-\frac{1}{2}\Tr \alpha\right)\subseteq\End^0(E)\)。现在不妨设\(\QQ(\alpha)\subsetneqq\End^0(E)\),若\(\beta \in \End^0 (E)\)的像不在\(\QQ(\alpha)\)中(\(\Tr\alpha=0\),且不妨设\(\Tr\beta=0\)),那么
\[ \Tr \left(\alpha\left(\beta-\frac{\Tr(\alpha\beta)}{2\alpha^2}\alpha\right)\right) = 0,\quad \Tr\beta = \Tr\left(\beta-\frac{\Tr(\alpha\beta)}{2\alpha^2}\alpha\right) \]因此不妨设\(\Tr (\alpha\beta) = 0\),此时
\[ \alpha\beta = -\widehat{\alpha\beta} = -\hat{\beta}\hat{\alpha} = -\beta\alpha \]此外,不难验证\(1,\alpha,\beta,\alpha\beta\)张成一个\(\QQ\)-线性空间,接下来我们需要证明其\(\QQ\)-线性无关,首先显然
\[ \beta\notin\QQ(\alpha)\implies\alpha\notin\QQ(\beta) \]即\(1,\alpha,\beta\)线性无关。其次,设\(\alpha\beta=a+b\alpha+c\beta,\ a,b,c\in\QQ\),那么
\[ \alpha\beta\notin\QQ(\alpha),\QQ(\beta) \implies a,b,c\ne 0 \] \[ \implies -\alpha^2\beta^2=(\alpha\beta)^2=a^2+b^2\alpha^2+c^2\beta^2+2a(b\alpha+c\beta)+bc(\alpha\beta+\beta\alpha) \] \[ \implies b\alpha+c\beta\in\QQ \]这与\(1,\alpha,\beta\)线性无关矛盾。这说明\(Q(\alpha,\beta)\)的确是一个四元数代数。进一步地,若\(\gamma \in \End^0 (E)\)的像不在\(\QQ(\alpha,\beta)\)中,不妨设\(\Tr\gamma=0,\ \Tr(\alpha\gamma)=0\),于是
\[ \alpha\gamma=-\gamma\alpha,\quad \alpha\beta\gamma = -\beta\alpha\gamma = \beta\gamma\alpha \]令\(\psi = \beta\gamma\),则\(\alpha\psi = \psi\alpha\),不妨设\(\Tr\psi=0,\ \Tr(\alpha\psi)=0\),则\(\alpha\psi+\psi\alpha = 2\alpha\psi = 0\)。由于\(\End^0 (E)\)没有零因子,故\(\alpha=0\)或者\(\psi=0\)成立,而任何一者都是不可能的。
Q.E.D.
- Appendix D - About the modular polynomial
引理D-1:设\(f\)为零阶自守函数(\(\Gamma\)-模函数),即\(f\)是一个在\(\HH^*=\HH\cup\{\infty\}\)上\(\infty\)处半纯,在\(\Gamma\)下不变的函数,其在无穷远点有q-级数\(f=\sum\limits_{n=-N}^\infty c_nq^n\),那么\(f\)可以表示为\(j\)的多项式,且系数为\(c_n\)的整系数线性组合。
证明:利用长除法,我们首先计算\(f_1=f-c_{M_1}j^{M_1},\ M_1 = -N\),那么\(v_{\infty}f_1 > -N\),重复此步骤算得\(f_2,f_3,\cdots,f_i,\cdots,\ M_i = v_{\infty}f_{i-1}\),直到\(v_{\infty}f_k > 0\),此时\(f_k\)在\(\HH^*\)上全纯,故根据Liouville定理与\(f_k\)的构造,\(f_k\)恒为0。
Q.E.D.
定理3-1:\(\Phi_n(X)\)满足
- \(\Phi_n(X)\in\ZZ[X,j]\)。
- \(\Phi_n(X)\)是\(\CC(j)\)上不可约的\(\psi(n)\)阶多项式。
- \(\Phi_n(X,j)=\Phi_n(j,X)\)。
- 若\(n\)不为平方数,则\(\Phi_n(j,j)\)次数大于1,且首项系数为\(\pm 1\)。
证明:
利用Smith标准形不难证明\(\Delta_n^* = \Gamma \alpha \Gamma,\ \alpha=\diag\{1, n\}\),即\(\Gamma\)右传递置换\(j\circ\alpha_1,\cdots,j\circ\alpha_{\psi(n)}\in\Gamma\backslash\Delta_n^*\),故\(\Gamma\)保持\(\Phi_n(X)\)的每个系数不变。又由于\(j\circ\alpha_i=\frac{1}{\zeta_{d_i}^{b_i}\cdot q^{a_i/d_i}}+\cdots\),故\(\Phi_n(X)\)的系数在\(\HH\)上全纯,且在\(\HH^*\)上半纯。根据引理D-1,这意味着,
\[ \Phi_n(X) \in \QQ(\zeta_n)((q^{1/n}))[X] =: k[X] \]显然\(k\)上的自同构
\[ \sigma_r: \zeta_{n} \mapsto \zeta_n^r,\quad r\in (\ZZ/n\ZZ)^* \]保持\(\Phi_n(X)\)不变,于是我们可以将\(\Phi_n(X)\)的系数展开为\(\ZZ((q))\)中的q-级数,从而再次根据引理D-1,
\[ \Phi_n(X) \in \ZZ[X],\quad \text{or } \Phi_n(X,j) \in \ZZ[X,j] \]与上述类似,由于\(\Gamma\)传递置换\(j\circ\alpha_1,\cdots,j\circ\alpha_{\psi(n)}\in\Gamma\backslash\Delta_n^*\),于是
\[ \psi(n) = \abs{\Aut(L/K)} \ge [L:K],\quad K=\CC(j),\ L=K(j\circ\alpha_1,\cdots,j\circ\alpha_{\psi(n)}) \]故\(L/K\)是\(\psi(n)\)次Galois扩张,即证。
注意到
\[ \Phi_n(j(\tau/n),j(\tau)) = 0 \implies \Phi_n(j(\tau),j(n\tau)) = 0 \]由于\(\Phi_n\)为上述\(X\)的极小多项式,故\(\Phi_n(X,j)\mid \Phi_n(j,X)\),从而,
\[ \Phi_n(j,X) = g(X,j) \Phi_n(X,j),\quad g\in\ZZ[X,j] \implies \Phi_n(X,j) = g(j,X) \Phi_n(j,X) \]于是,
\[ \Phi_n(X,j) = g(X,j) g(j,X) \Phi_n(X,j) \implies g(X,j) g(j,X) = 1 \implies g(X,j) = \pm 1 \] \[ \implies \Phi_n(X,j) = \pm\Phi_n(j,X) \]若\(\Phi_n(X,j)=-\Phi_n(j,X)\),则\(\Phi(j,j)=-\Phi(j,j)\),与2.矛盾。
设
\[ \alpha = \begin{pmatrix}a&b\\0&d\end{pmatrix} \in \Gamma\backslash\Delta_n^* \]\(ad=n\),则\(a\ne d\),于是
\[ j-j\circ \alpha = \frac{1}{q} + \cdots - \frac{1}{\zeta_d^b q^{a/d}} - \cdots \]可以看出\(\Phi_n(j,j)\)的q-级数形为
\[ \frac{c_m}{q^m}+\cdots \]即
\[ \Phi_n(j,j) = c_mj^m+\cdots \]不难发现\(m>1\),\(c_m\)为某个单位根,又由于\(c_m\in\ZZ\),故必有\(c_m=\pm 1\)。
Q.E.D.
- References
- Cheng Q. A new class of unsafe primes[J]. Cryptology ePrint Archive, 2002. https://eprint.iacr.org/2002/109
- Sedlacek V, Klinec D, Sýs M, et al. I Want to Break Square-free: The 4p-1 Factorization Method and Its RSA Backdoor Viability[C]//ICETE (2). 2019: 25-36. https://www.scitepress.org/Papers/2019/77866/77866.pdf
- S. Lang. Elliptic functions. Chapter 3, The Modular Function.
- S. Lang. Elliptic functions. Chapter 5, The Modular Equation.
- Moody D, Shumow D. Analogues of Vélu’s formulas for isogenies on alternate models of elliptic curves[J]. Mathematics of Computation, 2016, 85(300): 1929-1951. https://eprint.iacr.org/2011/430
- Neukirch J. Algebraic number theory[M]. Springer Science & Business Media, 2013. https://www.math.utoronto.ca/~ila/Neukirch_Algebraic_number_theory.pdf
- Cox D A. Primes of the Form x2+ ny2: Fermat, Class Field Theory, and Complex Multiplication. with Solutions[M]. American Mathematical Soc., 2022. https://www.math.utoronto.ca/~ila/Cox-Primes_of_the_form_x2+ny2.pdf
- Eta quotients of Dedekind eta functions. https://en.wikipedia.org/wiki/Dedekind_eta_function#Eta_quotients
- Ramanujan-Sato series. https://en.wikipedia.org/wiki/Ramanujan%E2%80%93Sato_series
- TravorLZH - 椭圆模函数(3)——模函数与模形式的基本性质 https://zhuanlan.zhihu.com/p/608669984