Notes on the Proof of ANT Thm. 3.7



本文讨论代数数论中的一个基本的定理,并在J.S. Milne, Algebraic Number Theory中Theorem 3.7的基础上补充一些细节。


基本表述:(定理 3.7)设\(A\)是戴德金整环(Dedekind domain),每个非零理想\(\mathfrak{a}\subsetneqq A\)都能被写成

\[ \mathfrak{a} = \mathfrak{p}_1^{r_1}\cdots\mathfrak{p}_n^{r_n} \]

的形式,其中\(\mathfrak{p}_i\)是不同的素理想,并且\(r_i>0\),并且\(\mathfrak{p}_i\)与\(r_i\)都是唯一确定的。


证明:(J.S. Milne)引理 3.8表明,\(\mathfrak{a}\)包含了某个非零素理想之积:

\[ \mathfrak{b} = \mathfrak{p}_1^{r_1}\cdots\mathfrak{p}_m^{r_m} \]

不妨设\(\mathfrak{p}_i\)是不同的素理想,那么有如下同构

\[ A/\mathfrak{b} \simeq A/\mathfrak{p}_1^{r_1}\times \cdots\times A/\mathfrak{p}_m^{r_m} \simeq A_{\mathfrak{p}_1}/\mathfrak{q}_1^{r_1}\times \cdots \times A_{\mathfrak{p}_m}/\mathfrak{q}_m^{r_m} \]

其中\(\mathfrak{q}_i=\mathfrak{p}_i A_{\mathfrak{p}_i}\),中国剩余定理保证了上述中第一个同构,而引理 3.10保证了第二个同构。我们知道,在每个离散赋值环(discrete valuation ring)\(A_{\mathfrak{p}_i}\)中,\(\mathfrak{q}_i\)是\(A_{\mathfrak{p}_i}\)唯一的极大理想,于是\(\mathfrak{a}/\mathfrak{b}\)在上述同构下的像可以表示为

\[ \mathfrak{q}_1^{s_1}/\mathfrak{q}_1^{r_1}\times \cdots \times\mathfrak{q}_m^{s_m}/\mathfrak{q}_m^{r_m} \]

其中\(s_i\le r_i\),此外,上式还是

\[ \mathfrak{p}_1^{s_1}\cdots \mathfrak{p}_m^{s_m} \tag{1}\label{1} \]

在上述同构下的原像,从而

\[ \mathfrak{a} = \mathfrak{p}_1^{s_1}\cdots \mathfrak{p}_m^{s_m}\subset A/\mathfrak{b} \]

这也就是说

\[ \mathfrak{a} = \mathfrak{p}_1^{s_1}\cdots \mathfrak{p}_m^{s_m}\subset A \tag{2}\label{2} \]

现在我们证明上述分解是唯一的,假设\(\mathfrak{a}\)在\(A\)中有两种分解方式,首先通过添加指数为\(0\)的素理想来补全两种分解方式中未出现在另一分解中的素理想,现在不妨设

\[ \mathfrak{p}_1^{s_1}\cdots \mathfrak{p}_m^{s_m} = \mathfrak{a} = \mathfrak{p}_1^{t_1}\cdots \mathfrak{p}_m^{t_m} \]

于是

\[ \mathfrak{q}_i^{s_i} = \mathfrak{a} A_{\mathfrak{p}_i} = \mathfrak{q}_i^{t_i} \]

必然有

\[ s_i=t_i \]

本文的剩余部分给出该证明的两个附注。

\eqref{1}:首先,根据引理 3.10,显然\(\mathfrak{p}_i\)是\(\mathfrak{q}_i\)的原像。此外,根据中国剩余定理,

\[ \begin{aligned} &\mathfrak{p}_1^{s_1}/\mathfrak{p}_1^{r_1}\times\cdots\times\mathfrak{p}_m^{s_m}/\mathfrak{p}_m^{r_m}\\ \mapsto\quad & (\mathfrak{p}_1^{s_1}/\mathfrak{p}_1^{r_1},\cdots,\mathfrak{p}_m^{s_m}/\mathfrak{p}_m^{r_m})\\ =\quad & (\mathfrak{p}_1^{s_1}\cdots \mathfrak{p}_m^{s_m}/\mathfrak{p}_1^{r_1},\cdots,\mathfrak{p}_1^{s_1}\cdots \mathfrak{p}_m^{s_m}/\mathfrak{p}_m^{r_m})\\ \mapsto\quad & \mathfrak{p}_1^{s_1}\cdots \mathfrak{p}_m^{s_m}/\mathfrak{p}_1^{r_1}\cdots \mathfrak{p}_m^{r_m} \end{aligned} \]

\eqref{2}:设\(A\)中所有包含\(\mathfrak{b}\)的理想的集合为\(B_1\),\(A/\mathfrak{b}\)上所有理想的集合为\(B_2\),我们尝试构建双射

\[ B_1\rightarrow B_2,\quad \mathfrak{a}\mapsto \mathfrak{a}/\mathfrak{b} \]

首先,对于\(B_2\)中的每个理想\(\mathfrak{a}/\mathfrak{b}\),都存在原像\(\mathfrak{a}\in B_1\)。其次,设它有两个原像\(\mathfrak{a}_1\)、\(\mathfrak{a}_2\),则下述推导是显然的(证明留做习题)

\[ \mathfrak{a}_1/\mathfrak{b}=\mathfrak{a}_2/\mathfrak{b} \iff \mathfrak{a}_1+\mathfrak{b}=\mathfrak{a}_2+\mathfrak{b} \iff \mathfrak{a}_1=\mathfrak{a}_2 \]

因此上述映射的确是双射。最后,只需注意到

\[ \mathfrak{a}/\mathfrak{b}=\mathfrak{p}_1^{s_1}\cdots \mathfrak{p}_m^{s_m},\qquad \mathfrak{b}\subset \mathfrak{a} \]
















Tags: #AlgebraicNumberTheory

Time: 2024-08-12 19:37